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Abstract

This investigation deals with the development of a software system to explore

the concept of previewing Air Tasking Orders in a three-dimensional virtual environ-

ment. The virtual environment is created by displaying three-dimensional graphics

images onto a graphics workstation scree. or onto a head-moiunte. display" The

software system, entitled the Battle Management Visualization System (BMVS),

supports a variety of input devices to suit different situations. The user is presented

with a miniature battle environment complete with aircraft, threat regions, targets,

etc. The aircraft fly along paths and arrive over the targets at the sinulated time

over target time. The user may also fly along the path to create a planc's eve view......

The user can move about the environment to examine various aspects close up or

zoom out for an overall view. The results of the effort support the idea that a tool

to preview ATOs is feasible.

viii



ATTLE MANAGEMENT VISUALIZATION SYSTEM

I. Introduction

This thesis deals with the development of a software system to allow a person

to preview what the execution of an Air Tasking Order may look like. The system

will support a variety of input and output devices to allow the individual user to

tailor the system to his or her tastes. In addition, the effectiveness of virtual world

generated by a head-mounted display will be explored. Finally the applicability of

this software system for non-combat operations such as FAA skyway management

will be investigated.

1.1 Background

Advances in tactical battlefield technology provide the battle manager with

more information than ever before. The battle manager uses the information to

make critical mission decisions. However, the amount of information presented may

exceed a human's information handling ability (17:619). It is clearly an undesirable

situation when thc battle manager cannot absorb all the needed facts to make the

best decision.

The decisions the battle manager makes, are communicated to the lower eche-

lons via an Air Tasking Order (ATO). The ATO specifies (among other things) the

resources to be used and the targets selected for tomorrow's war. Today's battle

manager has limited ways to evaluate the quality of the ATO (and therefore his

decisions). He may draw upon the collective experience of his staff or wait for the

ATO to be executed a"_ review the results. Both methods of evaluation have draw-

backs. ATOs are complex documents allocating hundreds of resources. Even an



experienced staff may miss the holes or inconsistencies within an ATO. Post ATO

execution review may aid the battle manager with future ATOs. However valuable

this hindsight is, it is just that - hindsight.

What a great help it would be to the battle manager to give him a crystal ball

and let him see the results of his ATO. This would allow him to optimize the ATO

for the most damage to the enemy with the fewest losses of his resources. ie would

gain all of the needed information very quickly as well; after all he need only look at

the picture tbe crystal ball provides. He not only produces the best plan possible,

he produces it without reaching his information handling limit.

While the BMVS does not promise to be that magical crystal ball, perhaps it

can provide the battle manager with some additional timely information to achieve

some of the same benefits. The BMVS will provide the battle manager with a three

dimensional perspective view of the battl: area. The 3-D view allows the battle

manager to instantly recognize fiercely defended areas (by the threat zones being

shown). The defense information is available, if somewhat embedded, in the ATO

but it is certainly not as quickly found. Figure 1 compares an example of a tabular

r--resentation of threat zones, a 2-D map version representing threat zones, and a

3-D representation of threat zones.

While the use of a BMVS in an operational situation as described above shows

promise, using a BMVS in a training situation may show more. A system such

as the BMVS could be integrated into a training environment without disrupting

operational missions. An inexperienced battle manager or inexperienced battle staff

members could learn by creating various ATOs and then previewing the ATOs and

get a feel for how the contents of an ATO might be executed.

1.2 Problem Statement

A software system can be designed to provide a battle manager with a preview

of where his resources will be during ATO execution.

2
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Figure 1. Tabular (A.), 2D (B.), and 3D (C.) representations of threat zones
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1.3 Research Questions

The following questions are the objects of this research:

1. Can effective use of computer graphics provide the battle manager .iseful pre-

views of the execution of Air Tasking Orders (ATOs)?

2. Can a three dimensional virtual world (such as provided by a head mounted

display) provide a natural man/machine interface for battle planning?

3. How can this approach aid in other areas, specifically non-combat applications

such as FAA Skyways and Terminal Control Areas management.

1.4 Definitions

Battle Management The process of planning, tasking, deploying, directing, or

controlling combat and support forces (2:66).

Computer Graphics The creation, storage, manipulation, and display of mathe-

matical models or digitized pictures using a computer (5:3).

1.5 Assumptions

Several assumptions help draw the road map for the project. One, the users

of the system have normal color vision. Two, the end user would have a computer

dedicated to this task (that is, the computer would not be running several other

tasks at the same time). Three, the graphic images need not be photo-realistic but

should communicate well.

1.6 Scope

Certainly the use of computer graphics is not the only possible method to

improve the ATO production process. It would be possible to incorporate some

Artificial Intelligence into the system to aid the battle manager in interpreting the

4



displayed information. However, this research is limited to the display issues involved

with ATO preview.

Change is often met with resistance. This is no less true in the Air Force than in

the civilian community. People in training however, tend to be more receptive toward

change than the old pros. Therefore, the the system developed during the research

is targeted for the training environment rather than the operational environment.

Focusing on the training environment also helps keep the research unclassified.

Every effort is used to keep the all portions of the research (that is, software, docu-

mentation, and thesis) unclassified. This is accomplished by using generic (dreamed

up) data for the theater, threat regions, etc. rather than real world data.

The work is deamed complete when a designed and implemented prototype

software system exists that demonstrates the use of computer graphics for ATO

preview. Specifically the BMVS completion criteria is as follows:

e It supports display on a standard CRT and the AFIT Head-Mounted Display.

e The frame rate is at an acceptable level (see section 3.1.2.2).

* It supports at least three input devices in various combinations.

* Portions of th virtual environment may be manipulated (edited) by the user.

5



II. Literature Review

Three interrelated factors create one inescapable problem of information over-

load for a battle manager. The first contributing factor is the mobility of today's

enemy forces. The second factor is the sheer number of enemy forces. A third fac-

tor is the vast amount of data that computer-based sensors collect on the enemy

forces. Together these factors produce an immense amount of information that may

go beyond the human's information handling ability (17:619). How can the battle

manager make the best decisions when so overwhelmed with information?

Such an information overload affects all of the battle manager's functions (that

is, planning, tasking, deploying, directing, and controlling). For example, one very

specific problem involves the production of Air Tasking Orders (ATOs). ATOs con-

sist of two parts. Part one contains high level guidance from the commander and

part two contains detailed mission guidance from the commander's staff. Before an

ATO can be produced, the staff must analyze information such as enemy activities,

aircraft availability, etc. In addition, much of the ATO production is done manually.

Therefore, the ATOs that reach the units may be based on data and guidance that

is over 24 hours old. Once the unit personnel receive the ATO, they prepare mission

sequence worksheets for each position and may post manual display boards (15:Sec

2, 40-44).

This chapter will discuss some current systems designed to ease the battle

manager's workload. Also discussed is the potential of computer graphics for co-

municating the needed information to the battle manager effectively. Finally, the

concept of a virtual environment and its applicability to battle management is ad-

dressed.

6



2.1 Current Battle Management Aids (15:Apndx a, 1-9)

Several systems currently exist to help the battle manager and battle staff. The

majority of these tools are Artificial Intelligence based decision aids. The following

section describes some of the tools available and what benefits they bring to the

battle staff.

2.1.1 Target Prioritization Aid (TPA). This tool is designed to prioritize

targets in such a way that the enemie's sortie capability is minimized for a given

number of friendly sorties. TPA outputs a list of prioritized targets that can be used

by the combat planners. There is no graphical output generated by the TPA.

2.1.2 Cost/Benefit of Tactical Air Operations (CBTAO). The CBTAO sys-

tem uses threat projection and friendly status information to predict the probability

of success for nominated targets. The tool is a rule-based expert system and can

incorporate actual battle results in order to remain accurate as battle conditions

change. The CBTAO system also has the capability of explaining how the probabil-

ity estimates were derived.

2.1.3 Command and Control Warfare Strategy Planning Aid (CTA). This

tool allows the user to input potential attack options and receive numerical values

for cost and benefit levels for each option. CTA is an Artificial Intelligence based aid

that can be thought of as an automated checklist/spreadsheet for the battle planner.

2.1.4 Route Planning Aid (RPA). This tool is designed to aid individual

flying units in planning the best flight path. RPA is a rule-based expert system

that uses Sam-threat, terrain, and flight profiles to determine the least-lethal route.

In addition, the system can provide the rationale for the route selection. RPA has

graphical output capability but uses a standard alpha-numeric terminal for input.

7



2.1.5 Computer Assisted Force Management System (CAFMS) (15:Sec 2, 5)

This system is the primary tool used tc build, update and disseminate ATOs. The

CAFMS is a conventional processing system (i.e., not Artificial Intelligence based)

which supports a variety of ADP file and distribution functions. No graphical output

is produced by the CAFMS.

2.1.6 Tactical Ezpert Mission Planner (TEMPLAR) (6:Sec 2, 1) Of the tools

discussed, TEMPLAR is the most comprehensive attempt to aid in the mission plan-

ning process. TEMPLAR uses knowledge-based artificial intelligence techniques to

assist in ATO production. The tool checks completeness and soundness of mission

profiles as well as the consistency of an evolving plan. In addition, TEMPLAR pro-

vides the planers with various options, ranking the possible solutions, and allowing

what if type trade-offs. TEMPLAR supports both tabular output and a map-like

graphical representation of the battle area.

2.2 Graphics as a Solution

As shown above, the problems facing the battle manager are well known and

several systems have been developed to address the problems. However, most of

the systems concentrate on providing some form of Artificial Intelligence technique

for descision support. An alternative or supplemental approach is to communicate

information to the battle manager with of computer graphics.

Could the use of computer graphics indeed help ease the battle manager's

problems? The answer is an unqualified yes. Two years ago Capt Mark Kanko

asked if computer graphics could help the pilot. Capt Kanko demonstrated that

a three-dimensional model of a flight through hostile territory could be generated

and displayed in less than one hour. He suggested as well that once the model was

generated the flight could be played back in real-time when hosted on a fast computer

(9:202).

8



The U.S. National Transportation Safety Board uses computer graphics to

analyze aircraft accidents. Raw data from the flight recorders is difficult to analyze

manually. The board's solution is to use the recorded data to generate graphic

images of the plane. The images are then recorded onto video tape for real-time

playback. The resulting animated sequence of the plane crash is easier to interpret

than columns and columns of numbers (8.2).

Researchers at the Naval Post Graduate school recognized the battle manager's

problem with information volume. Their proposed solution is a graphics based Com-

mand and Control Workstation. The researchers discuss several computer graphics

methods to aid in the information transfer. One, the use of color in the display

can be used to encode information. Two, the use of windows (or virtual displays)

allows the user to tailor the display to his personal preferences. Three, the use

of three-dimensional graphics (models drawn in perspective) can quickly show the

commandr the spatial relationships between objects (7:1-5).

2.3 A Virtual Environment

If the three-dimensional perspective view transmits information more effec-

tively than a two-dimensional view, then a truly three-dimensional display could be

the most effective. The display could simulate an environment to walk around in,

point to situations of interest, and perhaps even grab and reposition virtual aircraft.

We live in a three-dimensional world, so the information transfer would be quicker

and easier using a three-dimensional virtual world (7:5). Large real-time holographic

displays of the virtual world are beyond today's technology (7:5). Howe'-cr, there is

an alternative to holograms.

One method of providing a virtual environment that is within today's technol-

ogy is the Head-Mounted Display (HMD). A HMD presents the user with a three

dimensional perspective view that changes as he moves his head. A working HMD

was demonstrated over twenty years ago by Ivan Sutherland (14:757-764). Since

9



that time many researchers have produced their own versions of HMDs. For exam-

ple, NASA's Ames Research Center has produced a HMD (12:20-21) as has the Air

Force Institute of Technology(AFIT) (10:6-8). Today there is even an off-the-shelf

commercial HMD available (16:1).

A Head-Mounted Display (HMD) can provide a virtual world to the battle

manager. AFIT's HMD has already placed people into a battlefield. Recorded data

from the Air Force Red Flag exercises were used to create the environment. A track-

ing unit was placed on the helmet to track the user's head position and movement.

The user provides commands to the system through the use of a computer mouse.

The user can push a mouse button to jump into the nearest airplane, or perhaps

turn his head to see what is behind him (10:2-3,10-12). This spatial freedom could

give the battle manager the ability to move through the battlefield and assimilate

information effectively.

2.4 Summary

The battlc management environment is complex and information filled. Several

systems exist to aid the battle manager and staff with the problem using Artificial

Intelligence techniques. Effective use of computer graphics also shows promise for

helping the battle manager and staff cope with the workload. One effective computer

graphics technique discussed here was the concept of a three dimensional virtual

environment.

10



III. Requirements

The BMVS is being designed in an academic environment in order to establish

the concept. There is no specific end user and therefore no user requirements exist for

the BMVS. The lack of user requirements and tbe early stage of development allow

for a completely wide open design space. While complete design freedom seems

at first attractive, chances for success will be greater if the design is constrained

somewhat. The design space therefore will be limited to only that which will satisfy

the requirements described below.

Because we are generating the requirements as designers rather than having

users provide them, the fine line between requirements and design will likely be

stepped over more than a few times. The requirements will be broken down into two

nldjor parts, system requirements and software requirements.

3.1 System Requirements

3.1.1 General. The BMVS should be capable of taking data elements from

an Air Tasking Order and displaying a three dimensional, time-dependent represen-

tation of the order. Note that this is a representation of the order, to give the battle

staff a general idea of what the battlefield may look like when the ATO is executed.

It can not preview in exact detail how the order will be executed. This is simply not

possibie with the amount of data available at this planning level. It is intended to

provide the battle staff with some insights into the battle situation.

3.1.2 Hardware. Specific selection of computing hardware is deferred until

the design. However, the availability of machines limit the selection to one of the

following systems:

* Silicon Graphics IRIS 3130 workstation

11



* Sun 4 workstation with TAAC applications accelerator

* DEC GPX workstation

The system must be selected by how well it meets the following (prioritized

with highest first) requirements:

3.1.2.1 The system must be capable of displaying a good quality color

graphics image.

3.1.2.2 The system must provide a frame rate high enough (with mod-

erately complex images) to provide acceptable real-time animation. Eight frames a

second or higher is desired.

3.1.2.3 The system must support a wide variety of input devices s,,rb

as keyboard, mouse, Polhemus 3 space tracker, and VPL data glove.

3.2 Software

3.2.1 General. The software for this system is the key element. The hardware

is off the shelf and will not likely require any special configurations. The software

will be designed with efficiency in mind, because a high frame rate is desirable. The

software is not required to be foolproof, that is, extensive error checking is secondary

to overa!l functionality and performance. Specific software requirements ?re listed

below.

3.2.2 Displayable Objects. The BMVS must be capable of displaying objects

of four basic classes. First, a static representation of the terrain is required. Second,

objects that are movable but are not simulated in a time-dependent manner are

required (e.g., SAM sights, targets, etc.). Third, representations of flight paths that

the user can modify are required. Finally, objects that are simulated in a time

dependent manner, such as aircraft, are required. Table 1 lists the required objects.

12



Table 1. BMVS displayable objects

Class Description Movable Editable Time Dependent
1 Terrain No No No
2 Targets Yes No No
2 Threat zones Yes No No
2 Terminal control areas (TCAs) Yes No No
2 Vector airways waypoints Yes No No
2 Low Level Transit Route Yes No No
3 Flight Paths No Yes No
4 Aircraft No No Yes
4 User's point of view No No Yes

3.2.3 Input device support. The BMVS must support a variety of input de-

vices without greatly impacting the main routines. That is, a degree of device

independence is required.

3.2.4 Simulation. The BMVS must be able to preview how the execution

of an ATO may look. This involves simulation of time-dependent events and near

real-time animation.

3.2.5 Parameter files. The ATO information needed for the simulation must

be stored in files that the BMVS must be able to access.

3.3 Summary

These requirements will form the basis for evaluation of the BMVS. Chapter V

discusses how well the BMVS, as implemented, meets the requirements stated above.

13



IV. Design

Two basic design approaches were considered for this project. Both approaches

are object oriented but, to varying degrees. The first method was a completely

object oriented approach to be implemented in the C++ programming language.

The second method used some object oriented modules (in C) and reused some

procedurally designed software. This section will briefly describe each and explain

why the latter was chosen. Then the latter method will be discussed in detail.

4.1 Comparison of Two Object Oriented Techniques

4.1.1 "Full Blown" Approach. The first approach considered was a com-

pletely new development using object oriented design. A system that simulates

the real world is an ideal candidate for object oriented design. The real world ob-

jects are simply modeled as software objects. For example, an abstract data type of

an aircraft can be created that has many of the same attributes and functions of a

real aircraft (e.g., speed, position, heading, fuel, accelerate, dive). Object oriented

design is different enough from conventional design to significantly drive the choice

of implementation language.

The C++ programming language has several constructs, absent in C, to sup-

port object oriented development. One important construct is the ability to define

abstract data types. An abstract data type(ADT) is a set of values and operations

applicable to each object (1:28). In standard C the set of values and operations

applicable to each object can be easily described in structures. However to describe

the operations several C programmer tricks must be used and will lower the read-

ability of the product. A second feature C++ provides is class inheritance; objects

that are similar can share portions of the abstract data type. For example, airplanes

and helicopters might share a class called aircraft. The class aircraft describes the

common factors such as speed, altitude, etc. Meanwhile the class helicopter con-

14



tains unique factors such as rotor speed. The C language does not directly support

class inheritance. C++ is preferable to C for object oriented designs because of the

language support described above.

Although the object oriented design and C++ implementation approach is

sound, it is not without problems. Object oriented design provides good control

of an object's actions, such as "plane number one please speed up". Some object

interactions tend to be awkward, however. A bomb hitting a target cannot directly

destroy the target (objects have their own internal set of operations); instead the

bomb must request "airfield one, please destroy yourself". Implementing the design

in C++ has some problems of its own. C++ compilers are newer and less proven

than C compilers. In addition, C++ is not installed on as many computers. It was in

fact this second limitation of C+- that drove the selection of method two described

below.

4.1.2 Hybrid Approach. The main graphics engine in the AFIT graphics lab-

oratory is a Silicon Graphics Iris 3130 workstation. Unfortunately, our attempts to

install C++ on the Iris were unsuccessful. That forced the following trade-off:

* Implement with C -+ on the other workstations (Sun 4 with TAAC card, or

DEC GPX) and suffer performance degradations.

* Or, implement with C on the Iris and modify the design/implementation ap-

proach.

Gary Lorimor, as part of his thesis work, compared the performance of the

Iris and the GPX workstations. He found that the Iris could produce displays much

faster than the GXs(11:24). During an independent study project, Robert Filer

discovered that the Sun 4 with TAAC card performed (in terms of frame rates) 4 to

5 times slower than the Iris(3). Clearly, from the performance standpoint, the Iris

was the system of choice.
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To achieve the top performance from the Iris, some machine dependent libraries

must be used. By using these libraries, a degree of transportabililty is sacrificed.

Our decision was that a non-transportable system that works well is superior to

a transportable system that performs inadequately. This decision was based on

the assumption that no new hardware (money) was available to apply towards the

problem.

One side benefit of choosing the Iris was that much of the software used for

Gary Lorimor's thesis could be reused. Capt Lorimor's software produced a real-time

display of time dependent data. Although his software dealt with replaying recorded

events (vs. previewing planned events), several common requirements exist. Both

his system and the BMVS must have a method to read in object descriptions from

secondary storage. Both must have a way to represent terrain. Finally, both must

be able to render and move aircraft images along a time dependent path.

By reusing this software a hybrid design approach emerged. Capt Lorimor's

system (hereafter referred to as Red Flag) would be taken as the baseline. As

BMVS modules were developed they would be linked into the Red Flag system.

This provided a type of rapid prototyping capability in that as the first BMVS

module was written the system could be tested as a whole. The Red Flag system is

not object oriented so key areas of the Red Flag (such as input devices and aircraft)

would be converted to objects. Thus we are asking if object oriented design can be

retrofitted into existing software. This approach also provides some insight into how

practical code reuse is on this scale.

Based on this design approach and the requirement to support multiple input

devices, two basic hardware architectures were selected. The first uses the SGI 3130

workstation as the single processing unit (see Figure 2). In this configuration the

3130 handles all the input and output processing. The BMVS is implemented to

support the input devices shown (i.e., mouse, keyboard, Spaceball and Polhemus

tracker). However, this architecture is flexible enough to allow for the addition of
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new input devices at a later time. The second architecture uses the SGI 3130 as

the main processor, but offloads some of the input handling to a DEC MicroVax

(see Figure 3). The MicroVax relays the input device information to the 3130 via

an Ethernet connection. The second option should have better performance because

the SGI will be freed from the task of dealing with all the input data. The second

architecture doesn't greatly impact the software complexity of the BMVS because

the Virtual Environment Display System (see Section 4.4) directly supports this

architecture.

4.2 Design

Because an existing system is being used as the starting baseline, the top-level

design already exists. However, the existing top level design must be analyzed. The

results of the analysis help determine if the design is extensible to the BMVS. The

results of the analysis show that the Red Flag design can easily support the BMVS.

The Red Flag system is a transaction based system. The input devices are polled

ard then one of several options are executed based on the inputs. This activity of

polling and executing '; repeated until a quit input is received.

While the top-level design of the Red Flag system works quite well for the

BMVS, some of the lower level design does not. In particular the data abstractions

used do not correspond to objects (as desired for the BMVS). The following section

explains some of the lower-level design issues involved with reusing the Red Flag

software.

4.3 Detailed Design

The BMVS system is essentially a virtual world in which various objects reside.

The objects are abstract data records, that iL collections of attributes to describe the

nature and state of an object being modeled. For example, the abstract data record

for an aircraft may contain information such as speed, mission, time over target, etc.
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However, the operations that act upon an object are external to the object's abstract

data record. Because the operations are not part of the abstract data record this

approach is not totally object oriented.

Because of the importance of the objects in this system, the data structures

used to represent the objects will be discussed in detail in the section below. Then

implementation issues related to generating flight path data will be discussed. The

detailed design discussion will conclude by addressing some issues involved with using

the Virtual Environment Display System.

4.3.1 Data Structures. Three important data structures constitute the ob-

jects of concern in the BMVS. The object structures consist of the aircraft structure

for all the aircraft involved, the path structure for the planned routes the aircraft

fly, and the Basic Encylopedia Number (BEN) structure for all the generally static

objects such as targets, SAM sites etc. Several other important data structures,

which do not constitute objects, will be discussed as well.

4.3.1.1 Aircraft Objects. The aircraft object is essentially an abstract

record that contains the information about the aircraft. Some of the information in

the record is of use only internally to BMVS (e.g., graphic model number), others

are of use to only the user (e.g., mission code) and other elements are useful to both

(e.g., aircraft type). See Table 2 for a description of the aircraft record.

Aircraft objects are maintained in a linked list of aircraft as shown in Figure 4.

The aircraft are also linked into path objects to access position and orientation

information. This external link represents a break in the object abstraction; however,

the nature of the problem and memory efficiency concerns warrant the break. Several

aircraft may share similar paths; in fact, the aircraft often fly in groups of two or more

for protection. By allowing aircraft that fly similar routes to share path descriptions

via an external object (rather than replicating path descriptions within each aircraft

object) a substantial amount of memory can be saved.
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Table 2. Aircraft object data structure

Name Description
name aircraft name "F15", "F4", etc.
color render the aircraft in this color
position current position of the aircraft (x,y,z)
offset distance from the path aircraft flies (x,y,z)
model[2] SGI graphic object number, used to display the aircraft
delta the distance the aircraft flies in one tick of the clock
remaining-delta distance remaining to fly in a particular tick
remainiag-distance distance to end of line segment on path
next-plane pointer to the next aircraft object
pathname the path this aircraft follows
package which package this aircraft belongs to
mission mission identifier
ordnance what ordnance the aircraft has aboard
gfile user specified geometry file for the object
speed aircraft speed (MPH)
index index into path, how far down the path is the aircraft
selected boolean flag
time-over-target planned time over target
start-time planned start-time
path pointer to the path this aircraft follows

4.3.1.2 Path Objects. The path object is an abstract record which con-

tains position, orientation, and linkage information about a path. See Table 3 for

a description of the path record. The path record contains an array of x,y,z coor-

dinates that specify the positions along the path. Similar arrays are maintained for

the set of directional cosines that are used to orient an object placed onto the path.

The paths (positions and orientations) are generated from just a few control points

or waypoints. The path structure maintains a pointer into the list of waypoints.

4.3.1.3 BEN Objects. An ATO often makes reference to BENs (Ba-

sic Encyclopedia Numbers) to identify particular objects (targets, SAM sites, etc.)

rather than spelling out the object's details directly in the ATO. Appendix A de-
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Aircraft Object List

Path Object List

Figure 4. Aircraft list

scribes the typical content of an ATO. The BEN objects in the BMVS are generally

simpler than the aircraft and path objects described above. For example, while the

user may be able to select and reposition a SAM site, the SAM site is not simulated

with the same user independent, dynamic nature that the aircraft is. Also, in most

cases the BEN object is a local object as opposed to the path object that may span

the theater.

4.3.1.4 Other Structures. Two other structures are very important in

the operation of the BMVS and therefore warrant discussion here. The settings

structure deals with the user's run-time preferences and the command structure

allows different input devices to be used in a consistent manner.

The settings structure is designed as an abstract record that contains all the

information pertaining to run-time options. Which input devices are active, what

display mode is selected, and how paths should be displayed are examples of ques-

tions that are answered with the contents of the setting structure. One benefit
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Table 3. Path object data structure

Name Description
pathname used to uniquely identify this path
count number of control points along this path
next-path pointer to link to the next path in list
checkpoint pointer to the first control point
object-num SGI object number, used in displaying the path
dist-to-target distance along path from start to target
path-length total length along the path
length-per-segment distance from one line segment of path to next
active only active paths get displayed
selected is this the selected path
color color to draw the path
pointlimit number of points used to create line segments along path
path-style which complexity of path to use
cp.saved-color saves the color of the selected control point
points[MAX-POINTS] array of x,y,z points to describe the path
delta-direction direction to fly to get from one point to next
xcos[MAX-POINTS] x direction cosines (x,y,z) used in orienting aircraft
ycos[MAX-POINTS] y direction cosines (x,y,z) used in orienting aircraft
zcos[MAX.POINTS] z direction cosines (x,y,z) used in orienting aircraft

to collecting all the setting information together is that it makes debugging easier.

When debugging, a quick check of the settings structure gives a complete picture of

how the software is configured.

The command structure provides the interface between the input devices and

the BMVS. The protocol is as follows. A device dependent routine is called. If this

device has any new input, such as a mouse press on a mouse driver, the input 1b

translated to a command by the driver. Finally, this new command is pushed onto

a stack of commands. Once all the input drivers have been polled, the main routine

will empty the stack of commands and act on those commands. This cycle of polling

all input devices, followed by executing commands continues until a quit command is

received. This allows for several (quite different) devices to have the same interface
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to the main program. It also allows more than one device to send commands to the

main program during any given polling cycle.

4.3.2 Generation of Flight Path Data The BMVS and Red Flag systems are

similar in several areas. In the area of flight path generation, however, they differ

greatly. The Red Flag system has to deal with having too much flight data. The

BMVS must, conversely deal with too little data. The Red Flag system has an

updated data record available for each high-activity aircraft every one-third second

of elApsed time. Two out of three records are thrown out completely to save on

storage space. Much of the remaining record is thrown out as well. What is retained

is a data set that describes the aircraft's identification, position, and orientation at

an instant in time. The BMVS must attempt to give the same feeling of realism

with but a handful of data points. An ATO will specify locations of the launching

airbase, perhaps a iuel rendezvous, a target location, and a return destination. From

these few points the entire path must be generated. In addition, the ATO may only

specify a corresponding time for one of the points (the target). Therefore, all other

times must be derived from the time over target. Finally, no data is available as to

the orientation of the aircraft. The methods of dealing with the position, time, and

orientation data are described in detail below.

4.3.2.1 Positions. One way to derive the path positions from just a

few points is to linearly interpolate between the points. This is efficient in both

time and storage use. However, the results are unsatisfactory (see Figure 5.A). A

more common (and acceptable) solution is to use the data points as control points

to generate a cubic spline. A cubic spline is a piecewise polynomial that is useful

in computer graphics due to its continuity characteristics. Where one piece of the

cubic spline meets the next piece there is no discontinuity between the functions

or between the first derivitives of the functions (some splines are continous in the

second derivitive as well). These continuity characteristics make the resulting curve
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A. B.

Figure 5. Straight vs. curved line approximations to the path

look smooth and natural. The curved path shown in Figure 5.B looks much more

natural for an aircraft path than the straight line approach. Note that the curved

path only looks better; it doesn't convey more accurate information than the straight

path since no real information exists between the points. Because the curved path

is used only for aesthetic purposes, the selection of which cubic spline to use is not

critical. For convenience we tailored an existing program (13) to meet the needs

of the BMVS. The program can generate Cardinal splines or Beta splines, either of

which appears satisfactory.

4.3.2.2 Time Data. Generally, the only time included for an aircraft in

an ATO is the Time Over Target (TOT). Aircraft on alert are the exception (since

they have no predetermined target) and usually have specified start time or window

of vulnerability. In either case only one time is given from which all other times

must be derived.

The approach taken in the BMVS to calculate the times is straight forward.

First the aircraft is checked to see if it has a start time, a time over target, or both.
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If it has only a start time, the times along the path will be determined based on

the distance from tke star ;ng point and the speed of the aircraft. If only a TOT is

specified, the distance from start to target along with the speed is used to determine

the start time. Onf- the start time has been determined, the rest of the times are

found as in the first case. 1f both the start time and TOT are specified, the speed

flown is calculated from the time difference and the distance flown from start to

target. It is important to note that the start time and TOT are inputs from the

user and therefore are given more weight than the distance of the path since it was

artificially generated. It is possible for the BMVS to calculate an unrealistic speed

(e.g., 55 knots for an F15). This is absolutely acceptable (although not realistic) to

show the progress of the aircraft toward the target. Obviously the real aircraft would

have to fly a much longer path at a higher speed to meet the two time requirements.

However, at the times of high interest (i.e., start time and time over target) the

simulated aircraft would have an acceptably accurate position.

4.3.2.3 Orientation Data For a realistic look, it is not enough to simply

curve the path of the airplane, the airplane must be oriented correctly as well. It

would look very unnatural for an airplane to go through a tight turn without banking.

The bank angle an actual aircraft achieves through a turn is dependent on several

factors. The radius of the turn, aircraft design, speed of the aircraft, and amount

of applied rudder are but a few of the factors related to bank angle. For a planning

tool (vs. a flight simulator) the dynamics of the aircraft do not need to be accurately

modeled. The requirement therefore is to-produce something more believable than

an aircraft making level turns without the necessity of dynamic modeling.

The middle ground used for this project is to use only path data to deterr.line

the bank, ignoring all aircraft data. The method to determine the bank angle as

well as other orientation data (i.e., heading and angle of attack) is as follows. First

the aircraft is assumed to have an initial orientation of straight and level with an

arbitrary heading(Figure 6A.). This is represented by a vector in the Z direction (the
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tail vector T). Then the current point and the next two points along the curved path

are examined. From these three points a velocity vector (Y/)and acceleration vector

(A) are calculated(Figure 6B.). The cross product of the tail and velocity vector

results in a wing vector(W7) (Figure 6C.). The velocity vector and the wing vector

are then crossed to calculate a new tail vector which insures a mutually perpendicular

set of basis vectors (tail, velocity, wing). These vectors are used to orient the aircraft

with the fuselage along the V/ vector, the tail along the f vector and the wing along

the W vector (Figure 6D.). To determine the bank angle, the magnitude of the

acceleration vector is examined. The aircraft basis vectors are then rotated about

the velocity axis based on the magnitude of the acceleration vector (Figure 6E.).

The function that maps acceleration magnitude to bank angle was experimentally

derived to produce acceptable results.

4.4 The Virtual Environment Display System

The Virtual Environment Display System (VEDS) is a collection of software

libraries and hardware devices being developed to support virtual environment sys-

tems such as the BMVS (4). Because VEDS is being developed in parallel with the

BMVS, the risks and benefits of using the VEDS for the BMVS had to be analyzed.

A conservative approach was taken. Routines that could benefit most from the use

of VEDS were scheduled later in the development. For example, the keyboard and

mouse routines do not require VEDS support (they are supported by the Silicon

Graphics Library) and were developed first. The hooks for other (VEDS supported)

devices were put in place, but the actual development was delayed until the VEDS

drivers matured. Figure 7 shows the relationship of the BMVS, the VEDS, the SGI

libraries, and the operating system. Even with this conservative approach, one key

dependency (and therefore risk) on the VEDS was accepted. The benefits of the

VEDS Polhemus driver outweighed the risks.

To help illustrate the importance of the VEDS Polhemus driver, some back-
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Figure 7. BMVS, library interfaces

ground on the Polhemus tracker is needed. The Polhemus tracker uses a low fre-

quency magnetic field to track the position and orientation of a sensor. The Polhemus

operates in either a polled or a continuous mode. Both modes introduce some prob-

lems for the BMVS. When in continuoiv; mndr the Polhemus will oatput position and

orientation data whether the BMVS wants it or not. The BMVS is then responsible

for sorting out the data, queuing it up, and flushing all but the latest. When oper-

ated in polled mode the Polhemus returns data only when requested, but only after

a significant delay. The Red Flag system uses the polled method and circumvents

the delay problem by doing some useful work between the polling and the reading

operations. This solution works well but is not without problems of its own. How

much work should be done between polling and reading? What happens when other

input devices are used in conjunction with the Poihemus? What happens when the

29



Polhemus response rate is cut in half (necessary when using a second sensor)? These

are just a few of the questions that must be answered if the Red Flag approach were

used in the BMVS. Fortunately, the VEDS library offers the best solution.

The VEDS library provides a Polhemus driver routine that abstracts all the

unecessary details of communicating with the Polhemus away from the application

builder. All the application program does is call a VEDS library routine. The

VEDS library routine handles the timing details involved in communicating with

the Polhemus tracker. The VEDS Polhemus driver can even reside on a separate

computer so as not to compete with the BMVS for the CPU.
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V. Results

This chapter addresses how well BMVS meets the requirements stated in Clap-

ter 3. Additionally, the effectiveness of the code reuse described in Chapter 4 will

be discussed.

5.1 Ima-q- Quality

Section 3.1.2.1 states a subjective requirement for a good quality graphics im-

age. Figure 8 is a photograph taken directly from the BMVS screen. This photo-

graph, along with demonstrations to various audiences, indicates that the image is

_f sufficient quality to allow object recognition.

5.2 Input Dcv:.ces

Section 3.1.2.3 requires the software and the system to support multiple in-

put devices. As implemented, the BMVS supports mouse, keyboard, Dimension6

and Polhemus input devices. Section 5.4 discusses effects of the input devices on

performance.

5.3 Displayed Objects

Section 3.2.2 lists the requirements for all displayed objects. Geometric models

for all of the required objects have been implemented with the BMVS. Some of the

objects have riultiple representations, allowing the user to choose the best represen-

tation for his needs. For example, there are [our possible representations for path

objects.

5.4 Frame Rate

The frame rate requirement stated in Section 3.1.2.2 is a minimum of eight

frames a second. Table 4 lists frame rates observed under various conditions. Several
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Figure S. Sample BNIVS screen

factors affect the frame rate. The complexity of the graphics imc s the most

critical factor. The complexity of case one w~as relatively low: (aprrcximatcly. 200

filled polygons and 500 vectors). Case 2 wxas similar in all respec-s except that

approxim'~ately 3200 ROOtMna vectors were introduced to represent 2 at'ns.

The I3NIVS meets the 8 FiPS requlrecns in most cases. The Lases wvhere it

doesn't meet the reqtnrement are due to a high degree of scene coci::t.There-

fore in certain situations the user mav nave to decide hetweea increasn g the scene

COt: pc:: v (a th::e cost J fram~e rate or keepn ig the frame rato i ihe expense

son":(" 5 (ec Xec~mplexit ':.
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Table 4. Frame rates under various conditions

Case Conditions JTime Frames Frames/Sec.
1 2 paths (not shown), 3 aircraft active, 40 600 15

Green floor shown, 2 TCAs, 4 SAMs,
2 targets, and one LLAR in world
mouse and keyboard inputs only
see Figure 9

2 same as case 1 but paths shown 91 600 6.5
see Figure 10

3 same as case 2 with autofly active 93 600 6.5
4 same as case 1 with autofly active 37 600 16.2
5 same as case 1 but Dim6 (louvre 52 600 11.5

as server) as additional input
6 same as case 1 but Polhemus 40 600 15

(using louvre server)
7 same as case 4 but Polhemus 45 600 13.3

(using louvre server)
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Figre . Nocieratclv comp'ex scene no paths shown



FigLre I. !caelly complex sce'ne but paths shown



5.5 Code Reuse

One benefit of the hybrid design approach taken for the BMVS, discussed

in Section 4.1.2, was the opportunity to reuse existing software. This section will

discuss the amount of code reuse as well as any impacts, both positive and negative.

Table 5 lists the BMVS modules in three categories: totally new modules, the

reused and modified, and the reused unmodified. In general, the table is ordered

left to right in time and effort required (i.e., it takes longer to write new code than

it does to use existing code unmodified). Some of the existing modules required so

much modification that the final version resembled the original version in name only.

The two most notable modules of this type are the driver.c and the makeTransform.c

modules. These modules are counted as reused even though the effort was as much

or more than that needed for a new module. This effect is balanced out by the fact

that some modified code had only one or two lines that had to be modified (e.g.,

make-filled.c).

Of the 5100 source lines of code (SLOC) for the BMVS, over 2200 were created

with some degree of code reuse. The percentage of code reuse then is over 40%.

Eight percent of the total code was completed by reusing code with no modification.

If driver.c and makeTransform.c were counted as new code, the resulting percentage

of code reuse is still over 25%. These statistics indicate that reuse of C code on a

small project such as this can be practical.
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Table; 6. New code developmenrt vs. reused

New Modified Unmodified
Name SLOC Name SLOG Name SLOG

apply-settings.c 22 do-undoxc 112 dataxc 122
ben.c 94 graphics.c 93 lookat. c 182
dim6.c 186 makeTransform.c 277 make.wirexc 57
distance.c 23 makeboxxc 126 writestring.c 37
do-polhemus.c 57 make-lilled.c 54 swept.h 48
fullmousexc 217 driverxc 612 vector.h 5
glove.c 9 make-objs.c 165
init.c 114 set-planexc 77
joystick.c 9 splinexc 133
keyboard.c 454 externs.h 73
make airzonexc 177 graphics.h 108
make-mover.c 57
make-pathstyle3.c 66
maketime.c 92
modify-settings.c 83
makepath.c 271
newpath.c 69
readatoxc 232
savefile.c 178
set-clock.c 77
support.c 100
set-auto.c 53
constants.h 20
protos.h 21
structures.h 187
macros.h 17
total: 2875 total: 1828 total: 451
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VI. Conclusions and Recommendations

6.1 Conclusions

Overall, this thesis project achieved the desired objectives. The basic questions

(see Section 1.3) have been answered. Yes, a software system can be designed to

provide a battle manager some form of preview to an ATO execution. Yes, the

virtual world interface provides for a natural man/machine interface. Yes, the same

concepts used to generate a virtual military environment can be used to create a

non-combat virtual environment.

6.1.1 ATO Preview The BMVS is not the magical crystal ball mentioned in

the beginning of this thesis. For example, the user is given no predictive view of

how the enemy may react during ATO execution. However, the BMVS provides a

preview of where key resources will be at key times. An error or omission in an ATO

that has a single aircraft arriving at the target without support aircraft could be

easily spotted. A conflict in the use of airspace is another problem that could be

easily spotted.

6.1.2 Virtual World Interface The virtual world interface in the BMVS is

its strongest feature. The user is placed into an environment in which he can move

about and interact with objects. He can travel miles in a few seconds or move a SAM

site at the push of a button. In short, the user is provided with a powerful interface

in which to view and manipulate the environment. Appendix B, the BMVS Users

Manual, contains a complete description of the possible interactions.

6.1.3 Civilian Applications Several features were built into the BMVS to

allow for support for non-combat applications. First, non military BEN objects and

their corresponding geometry descriptions were included. This included Terminal

Control Areas (TCAs) and vector airway waypoints. Second, a path representation
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was developed that resembles the repre!entation of vector airways in aeronautical

charts. Finally, the BMVS allows the user to specify thk. geometric description for

a given object. This would allow the user to add new objects of inter-..t ;nto the

environment such as obstructing towers, civilian aircraft geometry, etc.

6.2 Recommendations

The BMVS system shows that there is promise in the area of ATO previewing.

However, there are several areas that warrant further investigation. A few possible

areas to consider are as follows:

* While the user interface for the BMVS is more flexible than that of its prede-

cessor the Red Flag system, there is still room for improvement. For a system

like the BMVS, providing the usei with an interface he is comfortable with is

very important to his acceptance of the overall system. Consider implement-

ing additional input devices into the BMVS to allow more choices and hence

increase the likelihood of meeting the user's expectations. The BMVS system

already has hooks in it for the VPL Data Glove and a joystick. The method

of implementing new devices is described in Appendix B, The BMVS Users

Manual.

* Additional benefits may be gained by combining some of the replay capabilities

of the RED FLAG system with the preview capabilities of the BMVS. By

comparing the preview of the ATO execution with an actual ATO execution,

the concept could be further validated and refined.

* Transfer the software to a machine with greater graphics capability. Occasion-

ally the lack of hidden surface removal in the BMVS is distracting. State of

the art graphics workstations can produce real-time images (of the complexity

found in the BMVS) with the hidden surfaces removed.
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Appendix A. Typical ATO Format

The information below is representative of the information contained in an

ATO. Actual formats vary from theater to theater but the information is essentially

tfie same. To run tiMV informatiou would be extracted from the ATO and put

into the necessary files.

A. 1 SPINS - Special Instimc-.ions

SPINS contain essential information which:

" apply to all flights

" apply to a group of flights performing similar tasks

" apply to a single flight out too lengthy to put in mission format

A.2 Mission Line

Example MSN 1001 8 HUR 2 F-4D .Bravo 5 PKG OZ INTSTK F 15 Dec

Field A B C D E F G H I J

The field descriptions are as follows:

A. Line name (what information follows)

B. 4 digit mission number, used to reference missions in ATO

C. Unit identifier (normally a wing's numerics)

D. 3 letter location identifier for the base where the mission will originate

E. Lists the number and type of aircraft

F. Call sign

G. Package ID

H. Mission type (see below)
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I. Service of the unit ( F=USAF, M=USMC, N=USN, A=ARMY, X=other)

J. Date of execution (blank if flown daily)

A.3 Ordnance line

II Exarnp!e ORD SCL 555 555/.509
It

[Field A B C

The field descriptions are as follows:

A. Indicates ordnance line

B. Standard conventional load, w;¢ritten out ordnance or an ordnance code specified

in SPINS

C. SCL for 1st and 2nd aircraft in flight

A.4 Time Over Target Line

HFExample TCT 0800-0930 AB 15,16 BEN 0380-00000 SAM BT 15

Field A B C D E F

A. IDs Time Over Target line (TOTs are local time)

B. Time over target (1 time indicates a hard time, 2 times denote a block time

C. Search area for armed recce missions

D. Basic encyclopedia number (from tactical target list)

E. Target description may be included

F. Box location of "BEN" target

A.5 Alternate Time Over Target Line

Example TOT 0800 cs60990 7  TANKS IUFO234PSAM CFA

Field A B r C D E F
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A. IDs Time Over Target line (TOTs are local time)

B. Time to plan release of ordnance

C. Location of target

D. Target description or abbreviation

E. Army request number used to ID air support requests

F. Field army to which the mission is distributed

A.6 Airborne Alert Line

Example ABA 0800-0900 orbit pt 3 Airborne Alert

Field A B C

A. IDs line

B. Vulnerability time to be in the assigned area

C. Assigned orbit points

A.7 Quick Reaction Posture Line

Example QRP 1800-2400 3 Alert Status E4D/E3D/B2D/B1D

Field A B C D

A. IDs line

B. indicates beginning and end of QRP liability period

C. Expected number of missions during the period

42



D. Alert status codes
1st char 2nd Char 3rd char

A - 3min DEFCON LEVEL D - Day

B - 5min N - Night

C - 8min C - Continuous

D - 10min

E - 15min

F - 30min

G - lhr

H - 3hr

A.8 Forward Air Controller Line

Example FAC 3000 Bronco 31 Orbit Pt 2 TAB 207/209

Field A B C D E

A. IDs line

B. The support FAC(AFAC) mission number, reference the CASFAC tasking in the

ATO

C. AFAC callsign

D. Is the CAS orbit point to which the fighters are to report.

E. UHG TADS (primary and secondary) to contact FAC

43



A. 9 IFF/SIF/LINE

Example MOD2 0410 0411

Field A B C

A. IFF line identifier

B. Mod2 squawk for 1st aircraft

C. Mod2 squawk for 2nd aircraft
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Appendix B. BMVS User's Manual

The BMVS is a very flexible software system. The more flexible a software

system becomes, however, the more burden is put on the user to cope with tae com-

plexity of the system. For example, no one would accept a word processing system

that only allowed the user to save files to the hard disk. By adding the flexibility to

save to any disk drive, the user now has to learn the method of communicating the

desired drive to the program. Actually word processors are typically very flexible

and offer more features than the average user will ever use or need to know how

to use. So it is with the BMVS, that is the user can run BMVS with a knowledge

of a subset of the complete capability. In that spirit this manual is organized into

three categories based on user expertise: Beginning (just what it takes to get BMVS

running), Intermcdiate (for users that may want to run BMVS under various con-

figurations), Expert (for experienced users who may even want to add a new input

device). The manual concludes with an explanation of the file formats.

B.1 Beginning Users

This section is meant to get the user up and running quickly. Therefore the

reader of this section will not have all the power of the BMVS at his or her disposal.

This section is broken down into what is needed to run and how to run BMVS.

B. 1.1 What Is Needed to Run BMVS. The minimum hardware configuration is

a SGI 3130 workstaton. The BMVS will look for several files in the current directory,

some of which must be present. (Table 6 lists the files the BMVS will search for).

B.1.2 How to Run BMVS. The sirrlest way to run BMVS is to simply type

"bmvs" with no options. The program will run using the default options (as modified

by paramfile, if present). Running under the default options, the keyboa.rd and mouse

are the active input devices and the workstation screen is the output device.
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Table 6. Required Files

Filename Purpose Required
paramfile Sets software configuration NO*
benfile defines locations of SAM sites NO*t

and similar objects
aircraftfile Defines the aircraft objects YES*t
pathfile Defines the paths the aircraft follow YES*t
f15 Geometry file YES
f16 Geometry file YES
f5 Geometry file YES
f4 Geometry file YES
alO Geometry file YES
fill Geometry file YES
waypoint Geometry file YES
target Geometry file YES
sam-site Geometry file YES
tca Geometry file YES
RangeData Geometry file YES
bigbox Geometry file YES
* filename may be changed by command line options
tfilename may be changed by paramfile contents

B.1.3 Mouse Control. This section describes the basic mouse button

bindings (i.e., which mouse button does what) for the BMVS. While these bindings

are set up to be easily modified, for the beginning user we will treat the bindings

as absolute. Table 7 lists all tb? standard mouse button bindings. Note that only

the mouse buttons are used; no mouse rolling is used. As Table 7 indicates, if the

user presses the right mouse button, the scene will pan to the right. Similarly, if the

user presses all three buttons at once a pop-up menu appears. The operation of the

pop up menu is discussed 'elow. Table 7 also mentions selecting a path object. The

concept of selected objects is discussed below as well.

B.1.4 Menu Operation. Once a pop-up menu appears, the mouse

button bindings change temporarily to allow the user to select the desired menu item.
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Table 7. Mouse bindings

Buttons Pressed Action
None No action
Right Pan to the right
Left Pan to the left

Center Move forward through scene
Left and Right Move backwards through scene

Right and Center Pan down
Left and Center Pan up

Left, Center, and Right Access menu

The right button is pressed to cycle through the various selections. Once the desired

item is highlighted, the user presses the left mouse button to select that item. The

menu then disappears and the mouse returns to normal operation. See Figure 11 for

an example of the pop-up menu. See Table 8 for an explanation of each menu item.

B.1.5 Selected Objects. At times the user may want to retrieve

information or edit a given path, aircraft, or BEN object. To do this he must

somehow indicate to the program which path, aircraft, or BEN object is of interest.

This is handled in the BMVS with the concept of the selected object. Only one

path may be selected at any given time. Likewise only one aircraft and one BEN

object may be selected. Each class of objects have a corresponding select command.

The select command de-selects the currently selected objects and selects the next

object in the list. The program cycles through the objects as the user presses the

select command such that all of the objects are available for selection. Note that the

selected objects are identified by their yeliow color yellow.

B.2 Intermediate Users

This section is designed for those familiar with the basic operation of the

BMVS but want to use some of the more advanced features. Keyboard, Spaceball,
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Figure 11. Example menu

Table 8. Menu actions

Menu Item Action
Toggle auto mode Turns on or off the autofly feature

(where the viewpoint follows a path at
a scale speed)

Toggle clock Turns the clock on and off; when
on the active aircraft fly along the paths;

when off the aircraft are frozen

Select Path Each time this item is selected a new
path is selected. The selected path is the

path followed during autofly mode
Pause auto mode Temporarily holds viewpoint in position

when in autofly mode

Quit BMVS Exit the program
Reset Clock Resets the clock to allow instant replays

Cancel Exit the menu with no other action taken
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and Polhemus input device operation will be discussed. In addition some of the

run-time configuration options will be explained.

B.2.1 Keyboard Operation. The keyboard is a key input device for the BMVS

as it is the only device where the user can access all of the features. Table 9 lists all

the standard key bindings. All commands are initiated with a single keystroke. Some

selected commands, set time for example, prompt the user fo, additional information.

These extended commands are explained in detail below.

B.2.1.1 Extended Commands. A few of the PMVS ormmands require

more information that can be provided with a single keystroke. These are called

extended commands, and require the user to respond to a prompt. Note that these

commands us: a very unforgIving interface (no' even backspace is supported for

example). However, the commands are short, so if an error is typed hitting return

and re-initiating the command is not difficult. The extended commands are as

follows:

c: set clock The system will prompt for a time in the format HH:MM:SS the user

may;

hit return Resets clock to 00:00:00 (same as R reset clock command)

enter hours HH only Time becomes HH:00:00

enter hours and minutes HH:MM Time becomes HH:MM:00

enter hours, minutes, and seconds HH:MM:SS Sets time to HH:MM:SS

e: edit run-time configuration The user will be asked to enter a keyword fol-

lowed by one or more values. The keyword/value format is the same as the

paramfile format (table 14) discussed in the file format section. However not

all of the keywords apply. For example the AIRCRAFTFILE: keyword is not

available as the aircraft file is read only during program start-up. The appli-

cable keyword/value combinations are listed in table 10.
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Table 9. Keyboard functions

Key Action
a toggle auto mode
b move backward through scene
B select the next BEN object
c set the clock *
d pan the viewpoint down
e edit run-time configuration *

f move forward through scene
F move forward through scene Fast
i get info on selected BEN object
I get Info on selected plane
k move selected control point in pos. x direction
K move selected control point in neg. x direction
1 pan the viewpoint to the left
m move selected control point in pos. z direction
M move selected control point in neg. z direction
n move selected control point in pos. y direction
N move selected control point in neg. y direction
p pause auto mode
P remake selected Path
q quit BMVS
r pan viewpoint to the right
s select next path
S Select next plane
t start/stop time
u pan viewpoint up
w write out current state of BEN objects *

W Write out current state of path objects *

x moves selected BEN object in positive x direction
X moves selected BEN object in negative X direction
y moves selected BEN object in positive y direction
Y moves selected BEN object in negative Y direction
z moves selected BEN object in positive z direction
Z moves selected BEN object in negative Z direction

* indicates an extended command
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Table 10. Runtime modifications

Keyword Values Description
MODE: String "NTSC" for NTSC mode
BLUE.BACK: Boolean 0 for black background, 1 for blue
CHECKPOINTACTIVE: Boolean Spline control points shown or not
PATHS-ACTIVE: Boolean 0 for no paths, 1 shows paths
BEN-ACTIVE: Boolean 1 to show BEN objects
SAM-ACTIVE: Boolean Reserved for later use
AIRPORTS-ACTIVE: Boolean Reserved for later use
AIRCRAFTACTIVE: Boolean Reserved for later use
TICK: Integer Tenths of seconds per frame (default 10)
PATH-STYLE: Integer Which path style to use (default 1)

w: write BEN file The user enters the desired filename and hits return.

W: write path file The user enters the desired filename and hits return.

B.2.2 Dimension6 input device. The Dimension6 (also referred to as the Space-

ball) input device provides six degrees of freedom ( 3 translation, 3 rotation). It

reports a proportional value in each degree of freedom based on the force applied.

It has eight pushbutton inputs as well. Table 11 describes the functions of the Ball

and the buttons.

B.2.3 Polhemus input device. The Polhemus is the simplest input device from

the user's perspective. The user turns his head a given direction and the viewpoint is

altered to match that turn. No other BMVS features are accessed with the Polhemus.

B.2.4 Run-time options. The BMVS will, by default, come up supporting

the mouse and the keyboard only. If the user wants to activate the Spaceball or

Polhemus ( or deactivate the mouse or keyboard) the BMVS must be told via the

paramfile. The method for activating the Spaceball and Polhemus are similar so a

detailed discussion will be given for the Spaceball only. To activate the Spaceball
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Table 11. Spaceball functions

Input Action
Slide ball forward Move forward through scene
Slide ball backward Move backward through scene
Rotate ball forward Pan viewpoint down
Rotate ball backward Pan viewpoint up
Rotate ball left Pan viewpoint left
Rotate ball right Pan viewpoint right
button 2 Toggle autofly mode
button 3 Start/stop clock
button 4 Pause autofly mode
button 5 Select next path
button 6 Mode change - changes ball bindings to

those shown in table 12
button 8 Quit BMVS

Table 12. Spaceball functions (alternate mode)

Input Action
Slide ball forward Selected BEN object moves in

positive y direction
Slide ball backward Selected BEN object moves in

negative y direction
Slide ball right Selected BEN object moves in

positive x direction
Slide ball left Selected BEN object moves in

negative x direction
buttons Have same function as in table 11
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the USEDIM6: keyword in the paramfile is followed by a value of 1. This tells

the BMVS to use input from the Spaceball in conjunction with the other active

input devices. Additionally the BMVS must know to which port the Spaceball is

connected. The keyword DIM6_PORT: is followed with a string which equals either

the tty port the Spaceball is connected to or the word "REMOTE" to indicate the

data will come from a remote server. Remote operation is preferred when possible

for best overall performance of the BMVS. Examples of both local and remote use

of the Spaceball is given below.

B.2.4.1 Local Mode. All that is needed to initiate local mode is to set

the proper paramfile keywords as shown in this example:

USE-DIM6: I

DIM6_PORT /dev/tty02

B.2.4.2 Remote Mode. For remote mode the paramfile keywords as set

as shown below:

USEDLlA&: I

DIM6YPORT REMOTE

In addition the remote server must be started as well. The server is normally run

on louvre ( the file server in the graphics laboratory). From louvre the command

server -f sbfile

is typed where sblfile has the following contents:

spaceball /dev/ttyd2

where the device is the actual port the Spaceball is connected to. Note that the

server must be restarted for each run of the BMVS.

53



B.2-.5 Command line options Several of the default run time parameters can

be altered by using command line options. The complete syntax of the command

line is as follows:

BMVS [-f paramfile] [-fp pathfile] [-fa aircraftfile] [-fb benfile] [-n]

where:

-f paramfile: use specified parameter file instead of default "paramfile"

-fp pathfile: use specified path file instead of default "pathfile"

-fa aircraftfile: use specified aircraft file instead of "aircraftfile"

-fb benfile: usc specified BEN file instead of "benfile"

-n: run in NTSC mode

Note that the command line options override any options specified in the paramfile.

B.3 Expert Users

This section is designzd for asers quite comfortable with most of the BMVS

features but want to know how to exploit it to its fullest. It can be considered a mini-

programmers manual because it deals with the likely modifications to the BMVS.

The changes one might want to make include changing an input devices binding's or

adding a new input device.

B.3.1 Changing Mouse Bindings Because the mouse communicates to the

BMVS with only its three buttons, only seven functions may be accessed with the

mouse. The three mouse buttons may be thought of the three bits that make up an

octal digit. The right most button is used as the least significant bit. The number

0 corresponds to no buttons being pushed and should not be bound to a function.

The remaining bindings can easily be changed by changing the define statements in

the source file fullmouse.c. The default bindings are shown below:
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#define FORWARD 2
#define BACKWARD 5

#define FASTFORWARD 99
#define TURN-RIGHT 1
#define TURN-LEFT 4
#define JUMP 98

#define PLEASE-QUIT 97
#define TURN-UP 6
#define TURN-DOWN 3

#define DO-MENU 7

If the desired reaction to pushing the right button is to pan the viewpoint down

then the TURN-DOWN symbol must be defined to be 1 and the TURN-RIGHT

symbol must be defined to a number other than 1.

B.S.2 Adding an Input Device Driver This section explains what is involved

with adding a device driver, and what existing software may need to be changed

due to the addition. Four input dev'ces are currently implemented on the BMVS:

mouse, keyboard, Dimension6 and Polbemus. The source code for these devices are

located in the following files: fullmouse.c, keyboard.c, dim6.c and do-polhemus.c.

Each driver communicates with the main driver routine in the same way, but each is

quite unique internally. It is highly recommended that the user inspect the drivers

for these devices and read the material below as a first step in installing a new driver.

B.3.2.1 Communication The basic line of communication between the

input device and the main driver routine is the command structure (see Table 13).

Each active input device is passed a pointer to a list of command structures and

adds new commands to the head of the list as dictated by the inputs to the physical

device. The driver then returns the pointer to the new head of the list (may be the

same as the input pointer if no neiv action is desired). Once all the input drivels have

collectively built the command list the BMVS driver traverses the list and executes

the corresponding commands. It is interesting to note that the mouse, keyboard, and

Polhemus devices return at most one command while the Dimension 6 may return
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Table 13. Command structure type definition

typedef struct command-structure
{
enum { NIL, MOVE-ANGLE, MOVE, MOVEABS, GRAB,
TILTANGLE,SELECTBEN, MOD-SETTINGS,
SELECT-PLANE, SELECT-CHECKPOINT, REMAKE-PATH,
PAUSE, SELECT-PATH , TOGGLE-CLOCK,
RESET-CLOCK, SET-CLOCK, DROP, JUMPINOUT,
LOOK, AUTOPATH ,MOVE-HAND, QUIT} action;

POSITION-TYPE delta-angles;

POSITiONTYPE eyepoint;
POSITION-TYPE center-point;

POSITION-TYPE delta;
float distance;

float sinTurn;

float cosTurn;
int redraw;
TIME-TYPE time;
PATH-TYPE *pathptr;

AIRCRAFT-TYPE *air-ptr;
BEN-TYPE *benptr;
CHEJKPT_.TYPE *ckptr;
struct command-structure *next-command;
int *hook /* user hook for later uses */

}COMMANDTYPE;

several. For example, the Dimension 6 allows the user to move forward and turn

right at the same time whereas the mouse can only do one or the other.

For efficiency reasons the driver routines are given access to a few global vari-

ables. The head pointers for the aircraft, BEN, and path lists as well as the pointers

to the selected aircraft, BEN, and path objects.

B.3.2.2 Program Modifications. Normally very few modifications should

be needed in the main sections of the BMVS when adding an input device. No
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changes should be necessary when adding either a joystick or VPL Data Glove driver.

The makefile already links in the stubs joystick.c and glove.c and the settings struc-

ture has references to the devices. So all that is needed in these cases is to write the

device drivers to replace the stubs.

When adding a new device other than the joystick or glove the amount of

modification needed depends on the answer to one question: "can the new device

operate within the existing command structure"? If the answer is yes then only part

one below needs to be completed, if however, the answer is no then parts one and

two must be completed to install the new driver.

Part One. The following changes must be made:

" The settings structure muqt b modified to include a value to indicate whether

the device will be active or not (for this example call it USE-NEW). If the

device uses a tty port a second variable must be added to store the port name.

" Init.c must be modified to set the default states of the variables added to the

settingc structure and to read in the values from a paramfile.

" The driver function is forward referenced in the header file protos.h.

* Make-mover.c must add tests to check USE.NEW and if true add the address

to the driver function onto the mover-table. If the driver requires it, its ini-

tialization routine is then called.

" Check to bee that adding this driver doesn't make the total number of drivers

exceed the maximum allowed ( constant MAX-DRIVERS ).

Part Two. When a completely new command :z added the following changes are

made in addition to the ones in part one:

* Modify the command structure to accommodate the new command.

* Add a case in the switch statement in driver.c to handle the case of this new

command.
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B.4 File Formats

The BMVS makes use of many files when it runs. Most of the files used

are AFIT format geometry files which describe the polygon descriptions of various

objects. The format for the geometry files is not discussed here as it is available

elsewhere. Four other files types are used by the BMVS and are described below.

B.4.1 The Parameter File The parameter file allows the user a method to

set the run-time configuration of the BMVS. Display mode (NTSC vs RGB), input

devices used, and whether paths are displayed or not are a few of the options that

can be included in the parameter file. The format of the parameter is as follows:

A series of lines, each beginning with a keyword followed by a space and one

or more corresponding parameters.

line = [keyword: value] [value ...]

Although any line not beginning with a keyword is ignored a convention of starting a

comment line with a "#" symbol has been adopted. All of the paramfile parameters

are optional and when a parameter is ommitted its default values will be used. See

table 14 for a complete listing of all the keywords. A short example of a paramfile

follows:

DIM6: 1
MODE: NTSC
PATH-STYLE: 2

This paramfile will cause the dimension 6 to be used as an input device, NTSC mode

will be used, and a moderately complex path object will be shown. Note that the

keyboard and mouse will also be used while the glove, joystick and Polhemus will

not due to the default settings.
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Table 14. Parameter File Keywords

Keyword IValues Description
AIRCRAFTFILE: String To specify an alternate aircraft file
PATHFILE: String To specify an alternate path file
BENFILE: String To specify an alternate BEN file
MODE: String "NTSC" for NTSC mode
POLHEMUS: Boolean A 1 indicates the Polhcmus is to be used
MOUSE: Boolean A 1 means use mouse
GLOVE: Boolean A 1 means use glove
DIM6: Boolean A 1 means use dimension 6 (spaceball)
JOYSTICK: Boolean A 1 means use joystick
BLUE-BACK: Boolean 0 for black background, 1 for bjue
CHECKPOINT-ACTIVE: Boolean Spline control points shown or not
PATHS-ACTIVE: Boolean 0 for no paths, 1 shows paths
BENACTIVE: Boolean 1 to show BEN objects
SAM-ACTIVE: Boolean Reserved for later use
AIRPORTSACTIVE: Boolean Reserved for later use
AIRCRAFT-ACTIVE: Boolean Reserved for later use
TICK. Integer Teniths of seconds per frame (default 10)
DO-FLOOR: Boolean 1 paints green floor, 0 for ;7ireframe only
DIM6 PORT: String Tty port or "REMOTE" when using server
POLHEMUSPORT: String Tty port or "REMOTE" to use server
GLOVEPORT: String Tty port or "REMOTE" to use server
JOYSTICKPOaT: String Tty port oc "REMOTE" to use server
PATHSTYLE: Integer Which path style to use (default 1)
XRANGE: 2 floats Min and max X for drawing terrain grid
YRANGE. 2 floats Min and max Y for drawing terrain grid
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B.4.2 The BEN File The BEN file (so named after the Basic Encyclopedia

Numbers used in ATOs to reference static objects) is used to describe the objects and

locations within the environment that are not aircraft, terrain, or paths. Examples

of BEN file objects are SAM sites, targets, TCAs, etc.

The BEN file consists of 1 or more object descriptions. The object descriptions

begin with the keyword OBJECT and end with the keyword END. Between the

OBJECT and END keywords are one or more lines that have a similar format to the

paramfile.

OBJECT

[keyword: value][value ...]

END

Like the paramfile, unspecified values in the BEN file for a given object will take on

default values. See Table 15 for a list of all the keywords. A short example BEN file

followz,:

OBJECT
TYPE: SAM
NAME: SAMOOXi
LOCATION: 320000 320000 0
COLOR: RFD
FRIENDLY: FOE
MODELSACTIVE: 0 1
GFILE: tca
END
OBJECT
TYPE: TARGET
NAME: Airfield one
LOCATION: 125000 -77000
COLOR: RED
FRIENDLY: FOE
MODELS-ACTIVE: 1 0
END
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Table 15. BEN File Keywords

Keyword Values Description
OBJECT Begins an object description
END Ends an object description
NAME: String Name of the BEN object
TYPE: String Type of BEN object e.g., airport, SAM, etc.
GFILE: String User specified geometry file
ACTIVE: Boolean 0 for not displayed , 1 for displayed
LOCATION: 3 floats Location in 3 space (x,y,z)
COLOR: String Object's color object e.g., "RED" "BLUE" etc.
FRIENDLY: String "FRIEND" "FOE" or "NEUTRAL"
FINISH: 3 floats 3 space location (complex objects only )
WIDTH: float (Complex objects only i.e., attack routes)
HEIGHT: float (Complex objects only i.e., attack routcs)
MODELS-ACTIVE: 2 booleans One for solid model _how,, nther for wireframe

This BEN file would produce two objects, one SAM site (rendered using the

geometry file "tca") and one target. The SAM site would be displayed with vectors

(MODELS-ACTIVE: 0 1) while the target would be displayed with filled polygons

(MODELS_-ACTIVE: 1 0).

B. 4.3 The Aircraft File The aircraft file is the mechanism used to specify what

aircraft are flown and at what times. The format of the aircraft file is very similar to

the BEN file. Each aircraft description falls between an OBJECT and END keyword.

OBJECT

[keyword: value] [value ...]

END

See Table 16 for a list of all the aircraft file keywords. An example aircraft file

follows:

#aircraftfile
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OBJECT
NAME: F15
PATH: testpathl
POSITION: 0. 0. 30.
COLOR: RED
SPEED: 420.
TOT: 09 00
#GFILE: fancy.f15
END
OBJECT
NAME: F4
PATH: testpath2
COLOR: BLUE
TOT: 11 00
END

This aircraftfile creates two aircraft objects ( a blue F4 and a red F15). The F15

will fly at 420 MPH while the F4 will fly at a default value. The F15 will fly about

30 feet above testpathl based on the values given with the keyword POSITION:.

The graphic object rend -red for the F15 will be make from the default f15 geometry

file rather than the "fancyfl5" file because the GFILE line is commented out.

B.4.4 The Path File The path file allows the user to describe a path with a

few control points. The path file format resembles the AFIT gc)metry file format

and is as follows:

Line 1: comment

Line 2: number of path records to follow

path records begin at line 3

path record format

Line 1: pathname

Line 2: number of control points following

control point records begin at line 3 of a path record

Linel: position (x, y, z)
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Table 16. Aircraft File Format

Keyword Values Description
OBJECT Begins an object description
END Ends an object description
NAME: String Name of the aircraft object
GFILE: String User specified geometry file
ACTIVE: Boolean 0 for not displayed , 1 for displayed
POSITION: 3 floats Offset from path in 3 space (x,y,z)
COLOR: String Color of the object e.g., "RED", "BLUE", etc.
PATH: String Name of the path this plane is to follow
PACKAGE: String Name of the package this aircraft belongs to
MISSION: String Mission identifier
ORDANANCE: String Type of ordnance (default "SCL")
TOT: 2 integers Hours minutes for time over target
START-TIME: 2 integers Hours minutes for start time
SPEED: float The aircraft's speed

Line2: type of checkpoint (home, fuel, target, etc.)

An example pathfile follows:

#paths
2
testpath 1
5
000
home
7000 7000 3070
fuel 40000 0 10000 path 190000 130000 33000
unknown
125000 -77000 9000
target
000
home
testpath2
5
000
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home
-25000 -55000 10000
fuel
-500000 -500000 5000
target
500000 -500000 45000
unknown
000
home

This pathfile creates 2 paths (testpathl and testpath2) each with 5 control points

used to create the curved path the aircraft will fly.
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Appendix C. Unix Manual Page

BMVS(1) USER COMMANDS BMVS(1)

NAME
BMVS - preview the execution of an Air Tasking Order

SYNOPSIS
BMVS [ -f paramfile ] [ -fb benfile ] [ -fa aircraftfile ]

[ -fp pathfile ] [ -n ]

DESCRIPTION
BMVS is a time dependent simulation of an ATO execution.
The user can change viewpoints within the environment or

"fly" along an aircraft's path. The user may also modify
the environment by moving objects such as targets to new

locations. The BMVS will supports the use of mouse, key-
board, Spaceball, and Polhemus Tracker input devices. By
default BMVS comes up with the mouse, and keyboard active.
The contents of the paramfile can alter which input devices
are active.

OPTIONS
-f paramfile

Use the specified paramfile rather than the default

"paramfile".

-fb benfile

Use the specified benfile rather than the default "ben-
file".

-fa aircraftfile
Use the specified aircraftfile rather than the default
"aircraftfile".
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-fp pathfile
Use the specified pathfile rather than the default
"pathfile".

-n Run in NTSC mode.

FILES
./paramfile runtime configuration
./benfile specifies location of BEN objects
./aircraftfile specifies the aircraft used in this

simulation
./pathfile specifies the paths the aircraft will

follow
./RangeData geometry file
./bi6 box geometry file
./f15, ./f16 , ./f5 geometry files
./f4, ./f111, ./a10 geometry files

SEE ALSO
server

BUGS
The formats for the required files must be strictly fol-
lowed. Variations will cause unexpected results.
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